1 (i) $\quad \int \frac{t}{1+t^{2}} d t=1 / 2 \ln \left(1+t^{2}\right)+c$ OR $\quad \int \frac{t}{1+t^{2}} d t$ let $u=1+t^{2}, \mathrm{~d} u=2 t \mathrm{~d} t$ $\begin{aligned} & =\int \frac{1 / 2}{u} d u \\ & =1 / 2 \ln u+c \\ & =1 / 2 \ln \left(1+t^{2}\right)+c \end{aligned}$	M1 A2 M1 A1 A1 [3]	$\begin{aligned} & k \ln \left(1+t^{2}\right) \\ & 1 / 2 \ln \left(1+t^{2}\right)[+c] \\ & \text { substituting } u=1+t^{2} \end{aligned}$ condone no c
$\text { (ii) } \begin{aligned} & \frac{1}{t\left(1+t^{2}\right)}=\frac{A}{t}+\frac{B t+C}{1+t^{2}} \\ & \Rightarrow \quad 1=A\left(1+t^{2}\right)+(B t+C) t \\ & t=0 \Rightarrow 1=A \\ & \text { coefff }^{\prime} \text { of } t^{2} \quad \Rightarrow 0=A+B \\ & \quad \Rightarrow B=-1 \\ & \operatorname{coefft}^{\prime} \text { of } t \quad \Rightarrow 0=C \\ & \Rightarrow \quad \frac{1}{t\left(1+t^{2}\right)}=\frac{1}{t}-\frac{t}{1+t^{2}} \end{aligned}$	M1 M1 A1 A1 A1 [5]	Equating numerators substituting or equating coeffts dep $1^{\text {st }}$ M1 $\begin{aligned} & A=1 \\ & B=-1 \\ & C=0 \end{aligned}$
$\begin{array}{cc} \text { (iii) } & \frac{\mathrm{d} M}{\mathrm{~d} t}=\frac{M}{t\left(1+t^{2}\right)} \\ \Rightarrow & \int \frac{1}{M} d M=\int \frac{1}{t\left(1+t^{2}\right)} d t=\int\left[\frac{1}{t}-\frac{t}{1+t^{2}}\right] d t \\ \Rightarrow & \ln M \end{array}=\ln t-1 / 2 \ln \left(1+t^{2}\right)+c .$	M1 B1 A1ft M1 M1 E1 [6]	Separating variables and substituting their partial fractions $\ln M=\ldots$ $\ln t-1 / 2 \ln \left(1+t^{2}\right)+c$ combining $\ln t$ and $1 / 2 \ln \left(1+t^{2}\right)$ $K=\mathrm{e}^{c} \quad$ o.e.
(iv) $\begin{aligned} & t=1, M=25 \Rightarrow 25=K / \sqrt{ } 2 \\ & \Rightarrow \quad K=25 \sqrt{ } 2=35.36 \\ & \text { As } t \rightarrow \infty, M \rightarrow K \end{aligned}$ So long term value of M is 35.36 grams	M1 A1 M1 A1ft [4]	$25 \sqrt{ } 2$ or 35 or better soi ft their K.

2	(i)	$h=20$, stops growing	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	AG need interpretation
	(ii)	$\begin{aligned} & h=20-20 \mathrm{e}^{-t / 10} \\ & \mathrm{~d} h / \mathrm{d} t=2 \mathrm{e}^{-t / 10} \\ & 20 \mathrm{e}^{-t / 10}=20-20\left(1-\mathrm{e}^{-t / 10}\right)=20-h \\ & =10 \mathrm{~d} h / \mathrm{d} t \end{aligned}$ when $t=0, h=20(1-1)=0$ OR verifying by integration $\begin{aligned} & \int \frac{d h}{20-h}=\int \frac{d t}{10} \\ & \Rightarrow-\ln (20-h)=0.1 t+c \\ & h=0, t=0, \Rightarrow c=-\ln 20 \\ & \Rightarrow \ln (20-h)=-0.1 t+\ln 20 \\ & \Rightarrow \ln \left(\frac{20-h}{20}\right)=-0.1 t \\ & \Rightarrow 20-h=20 e^{-0.1 t} \\ & \Rightarrow h=20\left(1-e^{-0.1 t}\right) \end{aligned}$	M1A1 M1 A1 B1 M1 A1 B1 M1 A1 [5]	differentiation (for M1 need $k \mathrm{e}^{-t / 10}, k$ const) $\text { oe eg } 20-h=20-20\left(1-\mathrm{e}^{-t / 10}\right)=20 \mathrm{e}^{-t / 10}$ $=10 \mathrm{~d} h / \mathrm{d} t$ (showing sides equivalent) initial conditions sep correctly and intending to integrate correct result (condone omission of c , although no further marks are possible) condone $\ln (\mathrm{h}-20)$ as part of the solution at this stage constant found from expression of correct form (at any stage) but B0 if say $c=\ln (-20)$ (found using $\ln (h-20)$) combining logs and anti-logging (correct rules) correct form (do not award if B0 above)

Question		Answer	Marks	Guidance
2	(iii)	$\begin{aligned} & \frac{200}{(20+h)(20-h)}=\frac{A}{20+h}+\frac{B}{20-h} \\ & \Rightarrow \quad 200=A(20-h)+B(20+h) \\ & h=20 \Rightarrow 200=40 B, B=5 \\ & h=-20 \Rightarrow 200=40 A, A=5 \\ & 200 \mathrm{dh} / \mathrm{d} t=400-h^{2} \\ & \Rightarrow \quad \int \frac{200}{400-h^{2}} d h=\int d t \\ & \Rightarrow \quad \int\left(\frac{5}{20+h}+\frac{5}{20-h}\right) d h=\int d t \\ & \Rightarrow \quad 5 \ln (20+h)-5 \ln (20-h)=t+c \\ & \text { When } t=0, h=0 \Rightarrow 0=0+c \Rightarrow c=0 \\ & \Rightarrow \quad 5 \ln \frac{20+h}{20-h}=t \\ & \Rightarrow \quad \frac{20+h}{20-h}=e^{t / 5} \\ & \Rightarrow \quad 20+h=\quad-h)^{t / 5}=20 \quad t / 5-h \mathrm{e}^{t / 5} \\ & \Rightarrow \quad h+h \mathrm{~h}^{t / 5}=20 \mathrm{e}^{t / 5}-20 \\ & \Rightarrow \quad h\left(\mathrm{e}^{t / 5}+1\right)=20\left(\mathrm{e}^{t / 5}-1\right) \\ & \Rightarrow \quad h=\frac{20\left(\mathrm{e}^{t / 5}-1\right)}{\mathrm{e}^{t / 5}+1} \\ & \Rightarrow \quad h=\frac{20\left(1-\mathrm{e}^{-t / 5}\right)}{1+\mathrm{e}^{-t / 5}} * \end{aligned}$	M1 A1 A1 M1 A1 B1 M1 DM1 A1 [9]	cover up, substitution or equating coeffs separating variables and intending to integrate (condone sign error) substituting partial fractions ft their A, B, condone absence of c, Do not allow $\ln (\mathrm{h}-20)$ for A 1 . cao need to show this. \boldsymbol{c} can be found at any stage. $\mathbf{N B} \boldsymbol{c}=\ln (-\mathbf{1})($ from $\ln (h-20))$ or similar scores B0. anti-logging an equation of the correct form. Allow if $c=0$ clearly stated (provided that $c=0$) even if B mark is not awarded, but do not allow if c omitted. Can ft their c. maki h the subject, dependent on previous mark NB method marks can be in either order, in which case the dependence is the other way around.(In which case, $20+h$ is divided by $20-h$ first to isolate h). AG must have obtained B1 (for c) in order to obtain final A1.
2	(iv)	As $t \rightarrow \infty, h \rightarrow 20$. So long-term height is 20 m .	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \\ & \hline \end{aligned}$	www
2	(v)	$\begin{aligned} & 1^{\text {st }} \text { model } h=20\left(1-\mathrm{e}^{-01}\right)=1.90 . . \\ & 2^{\text {nd }} \text { model } h=20\left(\mathrm{e}^{1 / 5}-1\right) /\left(\mathrm{e}^{1 / 5}+1\right)=1.99 . . \\ & \text { so } 2^{\text {nd }} \text { model fits data beter } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 dep } \\ {[3]} \\ \hline \end{gathered}$	O $1^{\text {st }}$ model $h=2$ gives $t=1.05$.. $2^{\text {nd }}$ model $h=2$ gives $t=1.003$.. dep previous B1s correct

Question		answer	Marks	Guidance
3	(i)	$\begin{aligned} & \mathrm{d} V / \mathrm{d} x=\pi\left(20 x-x^{2}\right) \\ & \begin{aligned} \Rightarrow \quad \frac{\mathrm{d} V}{\mathrm{~d} t} & =\frac{\mathrm{d} V}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t} \\ & =\pi x(20-x) \cdot \frac{\mathrm{d} x}{\mathrm{~d} t}=k(20-x) \end{aligned} \\ & \Rightarrow \quad \pi x \frac{\mathrm{~d} x}{\mathrm{~d} t}=k^{*} \end{aligned}$	B1 M1 A1 A1 [4]	o ag
. 3	(ii)	$\begin{aligned} & \int \pi x \mathrm{~d} x=\int k \mathrm{~d} t \\ & \Rightarrow \quad 1 / 2 \pi x^{2}=k t+c \\ & \text { When } t=0, x=0 \Rightarrow c=0 \\ & \Rightarrow \quad 1 / 2 \pi x^{2}=k t \\ & \text { Full when } x=10, t=T \\ & \Rightarrow \quad 50 \pi=k T \\ & \Rightarrow \quad T=50 \pi / k^{*} \end{aligned}$	A1 B1 M1 A1 [5]	separate variables and attempt integration of both sides condone absence of c $c=0$ www substitut t or $T=50 \pi / k$ or $x=10$ and rearranging for the other (dependent on first M1) oe ag, need to have $c=0$
3	(iii)	$\begin{aligned} & \mathrm{d} V / \mathrm{d} t=-k x \\ & \Rightarrow \pi x(20-x) \cdot \frac{\mathrm{d} x}{\mathrm{~d} t}=-k x \\ & \Rightarrow \pi(20-x) \frac{\mathrm{d} x}{\mathrm{~d} t}=-k^{*} \end{aligned}$	B1 M1 A1 [3]	correct $\mathrm{d} V / \mathrm{d} x . \mathrm{d} x / \mathrm{d} t= \pm k x \mathrm{ft}$ ag

4(i) When $t=0, v=5\left(1-\mathrm{e}^{0}\right)=0$ As $t \rightarrow \infty, \mathrm{e}^{-2 t} \rightarrow 0, \Rightarrow v \rightarrow 5$ When $t=0.5, v=3.16 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	
$\begin{aligned} \text { (ii) } & \frac{\mathrm{d} v}{\mathrm{~d} t}=5 \times(-2) \mathrm{e}^{-2 t}=10 \mathrm{e}^{-2 t} \\ & 10-2 v=10-10\left(1-\mathrm{e}^{-2 t}\right)=10 \mathrm{e}^{-2 t} \\ \Rightarrow \quad & \frac{\mathrm{~d} v}{\mathrm{~d} t}=10-2 v \end{aligned}$	B1 M1 E1 [3]	
$\begin{aligned} & \text { (iii) } \frac{\mathrm{d} v}{\mathrm{~d} t}=10-0.4 v^{2} \\ & \Rightarrow \quad \frac{10}{100-4 v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=1 \\ & \Rightarrow \quad \frac{10}{25-v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=4 \\ & \Rightarrow \quad \frac{10}{(5-v)(5+v)} \frac{\mathrm{d} v}{\mathrm{~d} t}=4^{*} \\ & \frac{10}{(5-v)(5+v)}=\frac{A}{5-v}+\frac{B}{5+v} \\ & \Rightarrow \quad 10=A(5+v)+B(5-v) \\ & v= 5 \Rightarrow 10=10 A \Rightarrow A=1 \\ & v=-5 \Rightarrow 10=10 B \Rightarrow B=1 \\ & \Rightarrow \quad \frac{10}{(5-v)(5+v)}=\frac{1}{5-v}+\frac{1}{5+v} \\ & \Rightarrow \quad \int\left(\frac{1}{5-v}+\frac{1}{5+v}\right) \mathrm{d} v=4 \int \mathrm{~d} t \\ & \Rightarrow \quad \ln (5+v)-\ln (5-v)=4 t+c \end{aligned}$ $\text { when } t=0, v=0, \Rightarrow 0=4 \times 0+c \Rightarrow c=0$ $\Rightarrow \quad \ln \left(\frac{5+v}{5-v}\right)=4 t$ $\Rightarrow \quad t=\frac{1}{4} \ln \left(\frac{5+v}{5-v}\right) *$	M1 E1 M1 A1 M1 A1 A1 E1 [8]	for both $A=1, B=1$ separating variables correctly and indicating integration ft their A, B, condone absence of c ft finding c from an expression of correct form
(iv) When $t \rightarrow \infty, \mathrm{e}^{-4 t} \rightarrow 0, \Rightarrow v \rightarrow 5 / 1=5$ when $t=0.5, t=\frac{5\left(1-\mathrm{e}^{-2}\right)}{1+\mathrm{e}^{-2}}=3.8 \mathrm{~m} \mathrm{~s}^{-1}$	E1 M1A1 [3]	
(v) The first model	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	www

